Abstract

For adaptive radiation therapy (ART), the contours on the planning CT (pCT) are frequently propagated to cone-beam CT (CBCT) via deformable image registration and manually edited, which is observer-dependent and time-consuming. To automate this process, we created a fully automated workflow by combining a deep learning (DL)-based pCT segmentation model with a CT-to-CBCT registration-segmentation DL model. The purpose of our research is to determine how using the proposed workflow's automatically generated contours affects thoracic organs-at-risk sparing (OAR). Seven patients with locally advanced non-small cell lung cancer who underwent treatment with intensity modulated radiation therapy were included in this study. Each patient's pCT was segmented using a published DL model that has been used for generating thoracic OAR segmentation and radiotherapy planning in the clinic since July of 2020. Next, pCT was deformably registered using a published recurrent deep registration-segmentation method. Whereas the original method's segmentation sub-network was only trained to segment esophagus, the registration sub-network was used to propagate contours for heart, esophagus, and the proximal bronchial tree (PBT). Geometric segmentation accuracy using the Dice Similarity Coefficient (DSC) and the 95th percentile Hausdorff Distance (HD) and dose metrics including the mean esophageal dose (MED) and D90% of the heart (D90) were computed from the total accumulated dose for the first two weeks of treatment. The esophagus had a high DSC and a low HD (0.93 and 2.85mm) and conversely, the heart had lower accuracy (DSC = 0.85, HD = 22.06mm). PBT showed relatively high performance as well, with DSC of 0.91 and HD of 2.28mm, owing to its proximity to the esophagus. The accumulated MED for manual contour was slightly lower than AI-contours (11.34 vs 11.83 Gy), suggesting reliability of the proposed workflow. The reverse is seen for the D90 of the heart (manual = 1.74 and AI-contour = 1.56 Gy), likely due to the heart not being included in the original DL framework. This study reported preliminary results on the feasibility of using a fully automated and patient-specific workflow for CBCT auto-segmentation in ART, confirming its role as a geometrically and dosimetrically accurate solution for thoracic OARs. However, because it is currently limited to the esophagus, we believe that re-training the algorithm will increase confidence in other OARs such as the heart and lungs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call