Abstract
Analysis of brain activities and remote control are among the current issues that are being studied. Analysis of signals arising during brain functions is electroencephalography (EEG). EEG signals have intellectual, visual stimulation, and motion resultant forms. Especially, EEG signals generated by visual stimulus are within the scope of this study. In this study, research was carried out on the classification of EEG signals formed in a person looking at visual figures. For these studies, first of all, EEG signals from the brain were recorded with images and filtered to remove noise. Then, the features were extracted from the signals. In this study, Moment 5 feature was also used in addition to the features used in many studies such as mean, median, standard deviation and entropy. Then, classification was made using Support Vector Machine (SVM), k Nearest Neighbor (KNN), and Decision Tree (DT) algorithms. Classification was made for 4 different visual shapes used, since these shapes are square, circle, triangle, and star, and the same categorical names were used in the classification stage. As a result of the classification of EEG signals; SVM and KNN algorithms have determined which shape is viewed with 99.99% accuracy. These results show that different signals are produced in the brain according to the structure of the shape viewed. This situation shows that it can be used as a method to give patients the opportunity to express their requests just by looking or thinking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.