Abstract

Understanding how structural and synthetic factors influence the complex refractive index of quantum dot (QD) solids is crucial to tailoring the light–matter interactions of QD-containing photonic and optoelectronic devices. However, neat QD films are challenging to accurately model as they are a mixture of inorganic core/shell materials and surrounding organic ligands. Furthermore, both the QD film morphology and the complex refractive index vary due to particle size, ligand chain length, and the deposition process. Here, we study the complex refractive index of neat CdSe/CdS core/shell QD films by using variable-angle spectroscopic ellipsometry to derive the effective complex refractive index using Kramers–Kronig consistent dispersion models. We use this information in conjunction with intrinsic refractive index data of CdSe and CdSe/CdS QDs extracted from solution-state absorption data and effective medium approximations (EMA) to describe neat QD films. We find that EMAs can successfully be used as a t...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call