Abstract

Nanocelluloses have received significant interest due to their unique structural, mechanical, and optical properties. Nanocellulose refractive indices can be used to indicate many crucial characteristics, such as crystallinity, transparency, and purity. Thus, accurate measurement is important. This study describes a new method to determine the wavelength dependent complex refractive index of cellulose nanocrystals (CNCs) by the measurement of light transmittance with a spectrophotometer. The data analysis is based on a combination of the Beer-Lambert and immersion liquid matching equations. The immersion liquid method's main advantage is that it is independent of particle shape and size. Moreover, the measurement is easy and relatively quick to perform. The present procedure is not restricted to the nanocellulose and could potentially be applied to other nanomaterials, such as hyphenate nanoparticle-based, lignin nanoparticles, nanopigments, biological entities, structural elements of dielectric metamaterials, and nanoparticle-based composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call