Abstract
We utilize photoconductivity spectroscopy to identify the unique chiral structure of individual carbon nanotubes (CNTs). Peaks in photoconductivity are measured throughout the visible and near-IR wavelength ranges. Photoconductivity peaks associated with individual CNTs are referenced against existing Rayleigh scattering measurements to uniquely identify chiral indices. We find close agreement between our assigned exciton resonances and the previously published exciton resonances. The typical net energy mismatch is ≤20 meV. By enabling chiral identification of CNTs after the completion of device fabrication, the technique offers a facile method for investigating relationships between CNT structure and electronic/optoelectronic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.