Abstract

A technique is developed for determining the thermoviscoelastoplastic geometrically nonlinear axisymmetric stress–strain state of laminar shells of revolution under loads that induce meridional stress and torsion. The technique is based on the hypotheses of rectilinear element for the whole stack of layers. The relations of the theory of deformations along paths of small curvature are used as equations of state. The solution is reduced to the numerical integration of a system of ordinary differential equations. The technique is tried out by a test example and illustrated by determining the geometrically nonlinear thermoviscoelastoplastic state of a corrugated shell

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.