Abstract

We estimate the E1 and E2 contributions to the Coulomb dissociation reaction 16O+Pb→α+12C+Pb using semiclassical Coulomb excitation theory. For projectile energies below 300 MeV/nucleon and scattering angles greater than 1°, we find that the process is dominated by the E2 component. This is in contrast to the astrophysically interesting 12C(α,γ)16O cross section, which is dominated by the E1 multipole at the most effective energy of 300 keV. The E2 sensitivity of Coulomb dissociation would usefully complement forthcoming 16N β-decay data, which will constrain only the E1 component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call