Abstract

Alzheimer's disease (AD) is a neurodegenerative disease affecting older adults. AD pathogenesis involves the production of the highly neurotoxic amyloid-β peptide 1-42 (Aβ1-42) from β-site amyloid precursor protein cleaving enzyme 1 (BACE1). The phosphorylation of BACE1 at Thr252 increases its enzymatic activity. This study examined the phosphorylation of BACE1 from human and rat BACE1 in silico through phosphorylation predictors. Besides, we explored how phosphorylation at various sites affected the BACE1 structure and its affinity with amyloid precursor protein (APP) and six BACE1 inhibitors. Additionally, we evaluated the phosphorylation of Thr252-BACE1 by glycogen synthase kinase 3 β (GSK3β) in vitro. The phosphorylation predictors showed that Thr252, Ser59, Tyr76, Ser71, and Ser83 could be phosphorylated. Also, Ser127 in rat BACE1 can be phosphorylated, but human BACE1 has a Gly at this position. Molecular dynamics simulations showed that Ser127 plays an important role in the open and closed BACE1 conformational structures. Docking studies and the molecular mechanics generalized Born surface area (MMGBSA) approach showed that human BACE1 phosphorylated at Thr252 and rat BACE1 phosphorylated at Ser71 have the best binding and free energy with APP, forming hydrogen bonds with Asp672. Importantly, inhibitors have a higher affinity for the phosphorylated rat BACE1 than for its human counterpart, which could explain their failure during clinical trials. Finally, in vitro experiments showed that GSK3β could phosphorylate BACE1. In conclusion, BACE1 phosphorylation influences the BACE1 conformation and its recognition of ligands and substrates. Thus, these features should be carefully considered in the design of BACE1 inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.