Abstract

This paper considers elastic shell elements. They move under pressure. The type of dependence of displacement on pressure is called the elastic characteristic of the element. The object of this study is shell elements with a complex surface shape, consisting of composite materials of the "metal-metal" type. The composite is a metal shell with reinforcing fiber made of another metal material. The form of reinforcement is different. The task to be solved is to determine the elastic characteristics of the shell elements depending on the geometric parameters, as well as the mechanical values of the shell at its various points and in different directions. To this end, algorithms were built for calculating mechanical quantities depending on the percentage of the fiber and the shell matrix. It was required to derive a system of equations for determining the displacements and internal forces in the element depending on the geometric and mechanical parameters. A numerical calculation of shell elastic elements was performed and a comparison of the results of analytical calculation according to the algorithm developed in this work and experimental data was performed. The match between these results is 99.8–100 %. The characteristics of the shell elements were determined depending on the type of reinforcing fiber and matrix, on the geometric parameters, and the type of reinforcement of the shell. These studies make it possible to design shell elements with specified characteristics and predefined sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.