Abstract

Spin current generated in a ferromagnetic metal (FM) can be divided into two types. While one is magnetization dependent and induced by the well-known anomalous Hall effect, the other is a magnetization-independent spin Hall effect which is similar to that in a paramagnetic heavy metal (HM). Here, we study the magnetization-independent spin Hall current in YIG/FM (NiFe and CoFeB) via spin-torque ferromagnetic resonance (ST-FMR) technique. Our experiments reveal the existence of a magnetization-independent spin current. Although there is a strong exchange interaction in FM, the spin current does not dephase as quickly as expected. Furthermore, we estimate the spin-torque efficiency $\ensuremath{\xi}$ of NiFe was 0.009, which is about $25%$ of the spin-torque efficiency of Pt. These results indicate that the spin Hall effect of FM should also be taken into account when investigating FM/HM heterostructures, and furthermore this effect can also benefit from the development of spin-orbit torque devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.