Abstract

Creation and developing methods of determining gas reservoir properties are one of the most important gas hydrodynamics tasks as production project efficiency and reservoir exploitation depend upon layer properties knowledge. Nonstationary gas hydrodynamics investigations are one of the base well and layer researching methods. Results of these investigations are interpreted based on solving of linear isothermal gas flow equation. The current investigation describes the nonstationary gas hydrodynamic survey results interpretation algorithm, which is based on nonlinear equations system solving. The system consists of nonlinear nonisothermal real gas flow and energy equations accounting well influence, Joule-Thompson and adiabatic expansion effects. Integro-interpolation and iteration finite methods were used for creating their own numerical algorithm. Numerical programs allow solving as direct as inverse gas flow tasks in the cylindrical layer. For verification of inverse task solution, the survey interpretation results from the real gas field were paralleled with currently methods results and showed sufficient accuracy. The described method allows to interpret survey gas hydrodynamic results accounting real gas and porous matrix properties, and well influence to enhance integrity and precision reservoir properties estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.