Abstract

An inverse problem is considered where the structure of multiple sound-soft planar obstacles is to be determined given the direction of the incoming acoustic field and knowledge of the corresponding total field on a curve located outside the obstacles. A local uniqueness result is given for this inverse problem suggesting that the reconstruction can be achieved by a single incident wave. A numerical procedure based on the concept of the topological derivative of an associated cost functional is used to produce images of the obstacles. No a priori assumption about the number of obstacles present is needed. Numerical results are included showing that accurate reconstructions can be obtained and that the proposed method is capable of finding both the shapes and the number of obstacles with one or a few incident waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.