Abstract

Competitive track cycling races are won by milliseconds, and the regulation of an athlete’s power output is an important factor in performance. The aim of this study was to use a mathematical model to predict finishing times for different pacing strategies for the individual pursuit (IP), to identify the optimal strategy in terms of fastest finishing time. Power profiles were generated for a number of common pacing strategies used in cycling, which were based on actual SRM power data for an elite, male, IP cyclist for whom the average power, maximum power, total work done and actual finishing time were known. The total work output was the same for all strategies and the finishing time was predicted using a mathematical model developed previously. The results showed that, of the strategies tested, an initial “all-out” high power acceleration phase followed by a lower constant power output produced the fastest finishing time for a 4,000 m IP event, and that the time spent in the initial high power acceleration phase had a significant effect on performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.