Abstract

The use of cerebral autoregulation monitoring to identify patient-specific optimal mean arterial pressure (MAPOPT) has emerged as a technique to augment cerebral oxygen delivery in post-cardiac arrest patients. Our systematic review aims to determine (a) the average MAPOPT in these patients, (b) the feasibility of identifying MAPOPT, (c) the brain tissue oxygenation levels when MAP iswithin proximity to the MAPOPT and (d) the relationship between neurological outcome and MAPOPT-targeted resuscitation strategies. We carried out this review in accordance with the PRISMA guidelines. We included all studies that used cerebral autoregulation to determine MAPOPT in adult patients (> 16years old) who achieved return of spontaneous circulation (ROSC) following cardiac arrest. All studies had to include our primary outcome of MAPOPT. We excluded studies where the patients had any history of traumatic brain injury, ischemic stroke or intracranial hemorrhage. We identified six studies with 181 patients. There was wide variability in cerebral autoregulation monitoring methods, length of monitoring, calculation and reporting of MAPOPT. Amongst all studies, the median or mean MAPOPT was consistently above 65mmHg (range 70-114mmHg). Definitions of feasibility varied among studies and were difficult to summarize. Only one study noted that brain tissue oxygenation increased as patients' MAP approached MAPOPT. There was no consistent association between targeting MAPOPT and improvedneurological outcome. There is considerable heterogeneity in MAPOPT due to differences in monitoring methods of autoregulation. Further research is needed to assess the clinical utility of MAPOPT-guided strategies on decreasing secondary injury and improving neurological outcomes after ROSC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call