Abstract
The present study investigates the effectiveness of evolutionary algorithms such as genetic algorithm (GA) evolved neural network in estimating roller compacted concrete pavement (RCCP) characteristics including flexural and compressive strength of RCC and also energy absorbency of mixes with different compositions. A real coded GA was implemented as training algorithm of feed forward neural network to simulate the models. The genetic operators were carefully selected to optimize the neural network, avoiding premature convergence and permutation problems. To evaluate the performance of the genetic algorithm neural network model, Nash-Sutcliffe efficiency criterion was employed and also utilized as fitness function for genetic algorithm which is a different approach for fitting in this area. The results showed that the GA-based neural network model gives a superior modeling. The well-trained neural network can be used as a useful tool for modeling RCC specifications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.