Abstract

Object detection is currently one of the most actively researched areas of computer vision, image processing and analysis. Image co-occurrence has shown significant performance on object detection task because it considers the characteristic of objects and spatial relationship between them simultaneously. CoHOG has achieved great success on different object detection tasks, especially human detection. Whereas, CoHOG is sensitive to noise and it does not consider gradient magnitude which significantly effects the object detection accuracy. To overcome these disadvantages the CoGMuLBP was proposed. CoGMuLBP uses a new statistical orientation assignment method based on uniform LBP instead of using the common gradient orientation. In this study, detection accuracies of CoGMuLBP and CoHOG are calculated on three different datasets with NN classifier. In addition, to evaluate the noise performance of the methods, gaussian noises were added to test images and performances were recalculated. Numerical experiments performed on three different datasets show that 1) CoGMuLBP has higher detection accuracy than CoHOG; 2) using uniform LBP based gradient orientation improves detection accuracy; and 3) CoGMuLBP is more robust to gaussian noise and illumination changes. These results provide the effectiveness of CoGMuLBP for object detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.