Abstract
A key element for decision makers to track is their stakeholders' sentiment. Recent developments show a tendency of including various aspects other than word frequencies in automated sentiment analysis approaches. One of these aspects is negation, which can be accounted for in various ways. We compare several approaches to accounting for negation in sentiment analysis, differing in their methods of determining the scope of influence of a negation keyword. On a set of English movie review sentences, the best approach is to consider two words, following a negation keyword, to be negated by that keyword. This method yields a significant increase in overall sentiment classification accuracy and macro-level F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> of 5.5% and 6.2%, respectively, compared to not accounting for negation. Additionally optimizing sentiment modification of negated words to a value of -1.27 rather than -1 yields a significant 7.1% increase in accuracy and a significant 8.0% increase in macro-level F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.