Abstract

Relatively general techniques for computing mean first-passage time (MFPT) of random walks on networks with a specific property are very useful since a universal method for calculating MFPT on general graphs is not available because of their complexity and diversity. In this paper, we present techniques for explicitly determining the partial mean first-passage time (PMFPT), i.e., the average of MFPTs to a given target averaged over all possible starting positions, and the entire mean first-passage time (EMFPT), which is the average of MFPTs over all pairs of nodes on regular treelike fractals. We describe the processes with a family of regular fractals with treelike structure. The proposed fractals include the T fractal and the Peano basin fractal as their special cases. We provide a formula for MFPT between two directly connected nodes in general trees on the basis of which we derive an exact expression for PMFPT to the central node in the fractals. Moreover, we give a technique for calculating EMFPT, which is based on the relationship between characteristic polynomials of the fractals at different generations and avoids the computation of eigenvalues of the characteristic polynomials. Making use of the proposed methods, we obtain analytically the closed-form solutions to PMFPT and EMFPT on the fractals and show how they scale with the number of nodes. In addition, to exhibit the generality of our methods, we also apply them to the Vicsek fractals and the iterative scale-free fractal tree and recover the results previously obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call