Abstract
This work presents a new staggered multilevel material identification procedure for phenomenological critical state plasticity models. The emphasis is placed on cases in which available experimental data and constraints are insufficient for calibration. The key idea is to create a secondary virtual experimental database from high-fidelity models, such as discrete element simulations, then merge both the actual experimental data and secondary database as an extended digital database (EDD) to determine material parameters for the phenomenological macroscopic critical state plasticity model. The calibration procedure therefore consists of two steps. First, the material parameters of the discrete (distinct) element method (DEM) simulations are identified via the standard optimization procedure. Then, the calibrated DEM simulations are used to expand the experimental database with new simulated loading histories. This expansion of database provides additional constraints necessary for calibration of the phenomenological critical state plasticity models. The robustness of the proposed material identification framework is demonstrated in the context of the Dafalias–Manzari plasticity model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.