Abstract

Aims. In this study we determine the morphology and mass-loss rate of jets emanating from the companion in post-asymptotic giant branch (post-AGB) binary stars with a circumbinary disc. In doing so we also determine the mass-accretion rates onto the companion, and investigate the source feeding the circum-companion accretion disc. Methods. We perform a spatio-kinematic modelling of the jet of two well-sampled post-AGB binaries, BD+46°442 and IRAS 19135+3937, by fitting the orbital phased time series of Hα spectra. Once the jet geometry, velocity, and scaled density structure are computed, we carry out radiative transfer modelling of the jet for the first four Balmer lines to determine the jet densities, thus allowing us to compute the jet mass-loss rates and mass-accretion rates. We distinguish the origin of the accretion by comparing the computed mass-accretion rates with theoretically estimated mass-loss rates, both from the post-AGB star and from the circumbinary disc. Results. The spatio-kinematic model of the jet reproduces the observed absorption feature in the Hα lines. The jets have an inner region with extremely low density in both objects. The jet model for BD+46°442 is tilted by 15° with respect to the orbital axis of the binary system. IRAS 19135+3937 has a smaller tilt of 6°. Using our radiative transfer model, we find the full 3D density structure of both jets. By combining these results, we can compute the mass-loss rates of the jets, which are of the order of 10−7 − 10−5 M⊙ yr−1. From this we estimate mass-accretion rates onto the companion of 10−6 − 10−4 M⊙ yr−1. Conclusions. Based on the mass-accretion rates found for these two objects, we conclude that the circumbinary disc is most likely the source feeding the circum-companion accretion disc. This is in agreement with the observed depletion patterns in post-AGB binaries, which is caused by re-accretion of gas from the circumbinary disc that is under-abundant in refractory elements. The high accretion rates from the circumbinary disc imply that the lifetime of the disc will be short. Mass transfer from the post-AGB star cannot be excluded in these systems, but it is unlikely to provide a sufficient mass-transfer rate to sustain the observed jet mass-loss rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.