Abstract
Radiology reports often contain follow-up imaging recommendations. Failure to comply with these recommendations in a timely manner can lead to delayed treatment, poor patient outcomes, complications, unnecessary testing, lost revenue, and legal liability. The objective of this study was to develop a scalable approach to automatically identify the completion of a follow-up imaging study recommended by a radiologist in a preceding report. We selected imaging-reports containing 559 follow-up imaging recommendations and all subsequent reports from a multi-hospital academic practice. Three radiologists identified appropriate follow-up examinations among the subsequent reports for the same patient, if any, to establish a ground-truth dataset. We then trained an Extremely Randomized Trees that uses recommendation attributes, study meta-data and text similarity of the radiology reports to determine the most likely follow-up examination for a preceding recommendation. Pairwise inter-annotator F-score ranged from 0.853 to 0.868; the corresponding F-score of the classifier in identifying follow-up exams was 0.807. Our study describes a methodology to automatically determine the most likely follow-up exam after a follow-up imaging recommendation. The accuracy of the algorithm suggests that automated methods can be integrated into a follow-up management application to improve adherence to follow-up imaging recommendations. Radiology administrators could use such a system to monitor follow-up compliance rates and proactively send reminders to primary care providers and/or patients to improve adherence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.