Abstract

Fallout 137Cs has been widely used to determine floodplain sedimentation rates in temperate environments, particularly in the northern hemisphere. Its application in low fallout, tropical environments in the southern hemisphere has been limited. In this study we assess the utility of 137Cs for determining rates of floodplain sedimentation in a dry-tropical catchment in central Queensland, Australia. Floodplain and reference site cores were analysed in two centimetre increments, depth profiles were produced and total 137Cs inventories calculated from the detailed profile data. Information on the rates of 137Cs migration through local soils was obtained from the reference site soil cores. This data was used in an advection–diffusion model to account of 137Cs mobility in floodplain sediment cores. This allowed sedimentation rates to be determined without the first year of detection for 137Cs being known and without having to assume that 137Cs remains immobile following deposition. Caesium-137 depth profiles in this environment are demonstrated to be an effective way of determining floodplain sedimentation rates. The total 137Cs inventory approach was found to be less successful, with only one of the three sites analysed being in unequivocal agreement with the depth profile results. The input of sediment from catchment sources that have little, or no, 137Cs attached results in true depositional sites having total inventories that are not significantly different from those of undisturbed reference sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call