Abstract

To clarify the origin of the polarization of magnesium deposition/dissolution reactions, we combined electrochemical measurement, operando soft X-ray absorption spectroscopy (operando SXAS), Raman, and density functional theory (DFT) techniques to three different electrolytes: magnesium bis(trifluoromethanesulfonyl)amide (Mg(TFSA)2)/triglyme, magnesium borohydride (Mg(BH4)2)/tetrahydrofuran (THF), and Mg(TFSA)2/2-methyltetrahydrofuran (2-MeTHF). Cyclic voltammetry revealed that magnesium deposition/dissolution reactions occur in Mg(TFSA)2/triglyme and Mg(BH4)2/THF, while the reactions do not occur in Mg(TFSA)2/2-MeTHF. Raman spectroscopy shows that the [TFSA]- in the Mg(TFSA)2/triglyme electrolyte largely does not coordinate to the magnesium ions, while all of the [TFSA]- in Mg(TFSA)2/2-MeTHF and [BH4]- in Mg(BH4)2/THF coordinate to the magnesium ions. In operando SXAS measurements, the intermediate, such as the Mg+ ion, was not observed at potentials above the magnesium deposition potential, and the local structure distortion around the magnesium ions increases in all of the electrolytes at the magnesium electrode|electrolyte interface during the cathodic polarization. Our DFT calculation and X-ray photoelectron spectroscopy results indicate that the [TFSA]-, strongly bound to the magnesium ion in the Mg(TFSA)2/2-MeTHF electrolyte, undergoes reduction decomposition easily, instead of deposition of magnesium metal, which makes the electrolyte inactive electrochemically. In the Mg(BH4)2/THF electrolyte, because the [BH4]- coordinated to the magnesium ions is stable even under the potential of the magnesium deposition, the magnesium deposition is not inhibited by the decomposition of [BH4]-. Conversely, because [TFSA]- is weakly bound to the magnesium ion in Mg(TFSA)2/triglyme, the reduction decomposition occurs relatively slowly, which allows the magnesium deposition in the electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.