Abstract

We demonstrate the capability of temperature-dependent 2D-IR to characterize sources of vibrational population transfer. In a model system of iron diene tricarbonyl "piano stool" complexes, this approach reveals symmetry breaking associated with equilibrium fluctuations and differentiates these from fluxional rearrangement. Tricarbonyl(1,3-butadiene)iron and tricarbonyl(1,5-cyclooctadiene)iron are shown to undergo intramolecular vibrational redistribution (IVR) coupled to the wagging motion of their carbonyl ligands. In the case of both molecules, these equilibrium fluctuations are distinguished from chemical exchange behaviors by their temperature dependence and arguments of molecular symmetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call