Abstract

The purpose of this study was to investigate the dosimetric properties and the lowest detectable dose of fingernails from their electron paramagnetic resonance signal. Fingernail clippings from 50 healthy individuals were collected, rinsed in water, and irradiated with (137)Cs gamma rays. Next, their electron paramagnetic resonance spectra were measured before and after exposure. The radiation-induced signal from the irradiated fingernails was relatively stable even after 68 d. Further, the intensity of the radiation-induced signal increased with progressive increases in the dose until saturation, while the background signal from the irradiated fingernails increased only gradually with time. The lowest detectable dose of the irradiated fingernails was 2 Gy. On the basis of these results, it can be concluded that the effect of the intrinsic signal must be taken into account during dose reconstruction. This electron paramagnetic resonance assessment method should be useful for the rapid screening of irradiated populations after nuclear accidents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call