Abstract

Equipment is developed to measure the concentration depth profiles in foam films with the vacuum based technique neutral impact collision ion scattering spectroscopy. Thin foam films have not previously been investigated using vacuum based techniques, hence specialized methods and equipment have been developed for generating and equilibrating of foam films under vacuum. A specialized film holder has been developed that encloses the foam film in a pressure cell. The pressure cell is air-tight except for apertures that allow for the entrance and exit of the ion beam to facilitate the analysis with the ion scattering technique. The cell is supplied with a reservoir of solvent which evaporates upon evacuating the main chamber. This causes the cell to be maintained at the vapor pressure of the solvent, thus minimizing further evaporation from the films. In order to investigate the effect of varying the pressure over the films, a hydrostatic pressure is applied to the foam films. Concentration depth profiles of the elements in a thin foam film made from a solution of glycerol and the cationic surfactant hexadecyltrimethylammonium bromide (C(16)TAB) were measured. The measured concentration depth profiles are used to compare the charge distribution in foam films with the charge distribution at the surface of a bulk solution. A greater charge separation was observed at the films' surface compared to the bulk surface, which implies a greater electrostatic force contribution to the stabilization of thin foam films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.