Abstract

Solar power and wind energy are used concurrently during specific periods, while at other times only the more efficient is used, and hybrid systems make this possible. When establishing a hybrid system, the extent to which these two energy sources support each other needs to be taken into account. This paper is a study of the effects of wind speed, insolation levels, and the meteorological parameters of temperature and humidity on the energy potential in Balıkesir, in the Marmara region of Turkey. The relationship between the parameters was studied using a multiple linear regression method. Using a designed-for-purpose computer program, two different regression equations were derived, with wind speed being the dependent variable in the first and insolation levels in the second. The regression equations yielded accurate results. The computer program allowed for the rapid calculation of different acceptance rates. The results of the statistical analysis proved the reliability of the equations. An estimate of identified meteorological parameters and unknown parameters could be produced with a specified precision by using the regression analysis method. The regression equations also worked for the evaluation of energy potential.

Highlights

  • The growing global energy problem highlights the increasing need for new and renewable energy sources on a daily basis, with wind and solar energy being the most obvious

  • Continuity of wind speed and insolation levels lead to a high energy potential, and it is accepted that temperature and humidity have an indirect effect on these two parameters

  • The wind and insolation level observation curves over a period of 24 months were as expected; and a close relationship was identified between the regression equation curves of the wind speed and insolation levels obtained via the multiple correlation method

Read more

Summary

Introduction

The growing global energy problem highlights the increasing need for new and renewable energy sources on a daily basis, with wind and solar energy being the most obvious. The annual average wind speed in the Marmara region for heights of 30, 50, 70, and 100 meters is 5.5–9.5 m/sec, as revealed in a study of Turkey’s wind energy potential and energy profile [2]. The annual average wind speed and solar energy of the Marmara region are 3.29 m/sec and 51.91 W/m2, respectively, which is considerably higher than most of the other regions of Turkey [3]. According to the European Commission Photovoltaic Geographical Information System’s analysis of Turkey, the yearly insolation per meter square is 2,040 kwh/m2, demonstrating the country’s considerable solar potential [5]. Considering the unreliability of solar energy due to variances in insolation levels, recent research has stated that the reliability of the system can be increased through the use of two or more complementary alternative energy sources [6]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.