Abstract

Social Network Analysis has become an impor- tant methodological tool for advancing our understanding of human and animal group behaviour. However, research- ers tend to rely on arbitrary distance and time measures when defining 'contacts' or 'associations' between individ- uals based on preliminary observation. Otherwise, criteria are chosen on the basis of the communication range of sensor devices (e.g. bluetooth communication ranges) or the sampling frequencies of collection devices (e.g. Global Positioning System devices). Thus, researchers lack an established protocol for determining both relevant associa- tion distances and minimum sampling rates required to accurately represent the network structure under investiga- tion. In this paper, we demonstrate how researchers can use experimental and statistical methods to establish spatial and temporal association patterns and thus correctly characterise social networks in both time and space. To do this, we first perform a mixing experiment with Merino sheep (Ovis aries) and use a community detection algorithm that allows us to identify the spatial and temporal distance at which we can best identify clusters of previously familiar sheep. This turns out to be within 2-3 m of each other for at least 3 min. We then calculate the network graph entropy rate—a measure of ease of spreading of information (e.g. a disease) in a network—to determine the minimum sampling rate required to capture the variability observed in our sheep networks during distinct activity phases. Our results indicate the need for sampling intervals of less than a minute apart. The tools that we employ are versatile and could be applied to a wide range of species and social network datasets, thus allowing an increase in both the accuracy and efficiency of data collection when exploring spatial association patterns in gregarious species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.