Abstract

Scalable and repeatable determinations of continuous wave (CW) laser-induced damage thresholds are required to develop materials for applications ranging from deformable mirrors to momentum transfer. Current standards assume sample geometries and beam conditions where CW damage thresholds are constant in linear power density, depend strongly on substrate thermal conductivity, and are insensitive to environmental conditions. In this work, the CW laser response of thin PET films with a reflective Al/MgF2 coating are experimentally assessed over a range of beam diameters and irradiances. The laser-induced damage threshold decreases with increased exposure time down to a temporally-independent irradiance, decreases with increased beam diameter to an irradiance that is independent of spot size, and depends on radiative and convective cooling. Models are used to define the minimum spot size and exposure time required to achieve such constant damage threshold irradiances for thin reflectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.