Abstract

State of the art fast differential scanning calorimetry (FDSC) is used to complement conventional differential scanning calorimetry (DSC) studies about the isothermal time-temperature-transformation (TTT) diagram of the bulk metallic glass forming liquid Pt42.5Cu27Ni9.5P21 to allow a comprehensive study of the crystallization kinetics of this system over a broad temperature range. FDSC and DSC data align well in the low-temperature region of the crystallization nose but show distinct discrepancies in the high-temperature region as the FDSC studies reveal faster crystallization times. The results are mathematically described and discussed based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. Thereby, either homogeneous or heterogeneous nucleation is assumed, depending on the respective experimental conditions in FDSC and DSC studies. With this approach, the complete TTT diagram can be modelled as superposition of two sequential JMAK fits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.