Abstract

Abstract Study aim: This study aimed to determine and compare the ‘optimum power load’ in the hexagonal (HBDL) and straight (SBDL) bar deadlift exercises. Material and methods: Fifteen novice strength-trained males performed three repetitions of the HBDL and SBDL at loads from 20–90% of their one-repetition maximum (1RM). Peak power, average power, peak velocity, and average velocity were determined from each repetition using a velocity-based linear position transducer. Results: Repeated measures ANOVA revealed a significant effect of load for HBDL and SBDL (all p < 0.001). Post-hoc analyses revealed peak power outputs for HBDL were similar across 50–90% 1RM, with the highest peak power recorded at 80% 1RM (1053 W). The peak power outputs for SBDL were similar across 40–90% 1RM, with the highest peak power recorded at 90% 1RM (843 W). A paired sample t-test revealed that HBDL showed greater peak power at 60% (Hedges’ g effect size g = 0.53), average power at 50–70%, (g = 0.56–0.74), and average velocity at 50% of 1RM (g = 0.53). However, SBDL showed greater peak velocity at 20% (g = 0.52) and average velocity at 90% of 1RM (g = 0.44). Conclusion: Practitioners can use these determined loads to target peak power and peak velocity outputs for the HBDL and SBDL exercises (e.g., 50–90% 1RM in HBDL). The HBDL may offer additional advantages resulting in greater peak power and average power outputs than the SBDL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call