Abstract
In this article, we study the problem of finding a singleton attractor for several biologically important subclasses of Boolean networks (BNs). The problem of finding a singleton attractor in a BN is known to be NP-hard in general. For BNs consisting of n nested canalyzing functions, we present an O(1.799(n)) time algorithm. The core part of this development is an O(min(2(k/2) · 2(m/2), 2(k)) · poly(k, m)) time algorithm for the satisfiability problem for m nested canalyzing functions over k variables. For BNs consisting of chain functions, a subclass of nested canalyzing functions, we present an O(1.619(n)) time algorithm and show that the problem remains NP-hard, even though the satisfiability problem for m chain functions over k variables is solvable in polynomial time. Finally, we present an o(2(n)) time algorithm for bounded degree BNs consisting of canalyzing functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.