Abstract

Research Highlights: A transparent approach to developing a forest reference emissions level (FREL) adjusted to future local developments in Southern Cameroon is demonstrated. Background and Objectives: Countries with low historical deforestation can adjust their forest reference (emission) level (FREL/FRL) upwards for REDD+ to account for likely future developments. Many countries, however, find it difficult to establish a credible adjusted reference level. This article demonstrates the establishment of a FREL for southern Cameroon adjusted to societal megatrends of strong population—and economic growth combined with rapid urbanization. It demonstrates what can be done with available information and data, but most importantly outlines pathways to further improve the quality of future FREL/FRL’s in light of possibly accessing performance-based payments. Materials and Methods: The virtual FREL encompasses three main elements: Remotely sensed activity data; emission factors derived from the national forest inventory; and the adjustment of the reference level using a land use model of the agriculture sector. Sensitivity analysis is performed on all three elements using Monte Carlo methods. Results: Deforestation during the virtual reference period 2000–2015 is dominated by non-industrial agriculture (comprising both smallholders and local elites) and increases over time. The land use model projections are consistent with this trend, resulting in emissions that are on average 47% higher during the virtual performance period 2020–2030 than during the reference period 2000–2015. Monte Carlo analysis points to the adjustment term as the main driver of uncertainty in the FREL calculation. Conclusions: The available data is suitable for constructing a FREL for periodic reporting to the UNFCCC. Enhanced coherence of input data notably for activity data and adjustment is needed to apply for a performance-based payment scheme. Expanding the accounting framework to include forest degradation and forest gain are further priorities requiring future research.

Highlights

  • The REDD+ mechanism was designed to reward countries financially for reducing emissions from deforestation and forest degradation (DD), which significantly contributes to total greenhouseForests 2019, 10, 1095; doi:10.3390/f10121095 www.mdpi.com/journal/forestsForests 2019, 10, 1095 gas (GHG) emissions worldwide [1]

  • This paper focuses on the development of a virtual subnational forest reference level (FRL) as an interim measure towards the development of a national FRL for Cameroon

  • The deforestation dynamicsproduction computedcomputed by the model alsoascompared data from available with statistical data from the ministry of agriculture (MINADER) or the Food and Agriculture Organization (FAO)

Read more

Summary

Introduction

Forests 2019, 10, 1095 gas (GHG) emissions worldwide [1]. The underlying idea is that avoided deforestation offers a large and very cost-effective potential to curb GHG emissions [3,4]. To measure progress in this regard, a benchmark measure is needed to define how much would be emitted in the absence of REDD+ interventions. This benchmark is called a forest reference level (FRL) or forest reference emission level (FREL). The former refers to an accounting framework where forest gain is considered, the latter refers to forest loss only.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call