Abstract
In recent years, complex solution composition analysis based on spectroscopy has been a research hotspot for researchers and has broad application prospects. Improving the ability of complex solutions component analysis based on spectroscopy, eliminating spectral data redundancy and the chance correlation problem it brings has become an urgent issue. In order to solve these problems, this paper takes the dynamic spectrum (DS) as the research object, and uses the “salami slicing” method to process the DS data. Firstly, the significant digit of the decimal DS data is processed, and then the partial least-squares (PLS) method is applied to model and analyze the processed DS data. The turning point of the modeling accuracy's change is found, and the significant digit number of DS data is determined roughly. On this basis, the weight of the binary number is used skillfully to process the significant digit of DS. The processed DS data is modeled, and the significant digit number of the DS data is accurately analyzed to establish the efficacy of the proposed method. This method does not only improve the signal-to-noise ratio (SNR) of DS data, but also avoids the chance correlation problem due to the data redundancy. This method also provides a good means for SNR estimation of other spectral data and avoiding the chance correlation problem in modeling, and has a high application value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.