Abstract

In this paper, we report method development work to determine geniposide using LC/MS/MS via the formation of positive and negative ion adducts. Geniposide, which has been recognized to have choleretic effects, is the major iridoid glycoside component of Gardenia herbs. To enhance the sensitivity of LC/MS detection of geniposide, a small amount of volatile additives such as ammonium acetate and acetic acid are added into mobile phase solvents to form positive and negative adducts, which can then ionize via electrospray processes. The formation of positive adducts is due to the complexation between geniposide and ammonium ions ([M + NH 4] +). The formation of anionic adducts [M + CH 3COO] − is believed to occur via hydrogen bonds bridging acetate ions and glucose groups on the geniposide molecule. Mobile phase solvents containing acetonitrile and aqueous solution (0.2 mM ammonium acetate or 0.1% acetic acid) at the ratio 15: 85 are employed to elute geniposide using C8 reverse phase liquid chromatography columns with electrospray tandem mass spectrometry determinations. Using geniposide standards, the methods are validated at the concentration ranges of 5 to 1000 ng/mL and 20 to 5000 ng/mL using ammonium and acetate adducts respectively. The correlation coefficients of the standard curves are 0.9999 using both ammonium and acetate adducts. The detection limits of using ammonium and acetate adducts are 1 and 5 ng/mL respectively. The measurement accuracy and precision of using ammonium adducts are within 12% and 3% respectively, whereas the accuracy and precision are within 6 and 11% respectively using acetate adducts. When the validated calibration curves of the ammonium adduct of geniposide are used to determine spiked control samples in rat blood dialysates, the determination errors of accuracy and precision are within 12% and 10% respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call