Abstract

A pilot plant was designed and set up to study the thermal cracking of atmospheric gasoil. Based on the CCD (central composite design) method, a set of systematic experiments were designed and carried out. The designed variables were COT (coil outlet temperature), steam ratio and feed flow rate. The ranges of these variables were, respectively, equal to 716–884 °C, 0.46–1.136 and 0.977–6.02 g/min. The obtained minimum and maximum yield of ethylene was, respectively, equal to 1.7% and 30.9%, as well as the maximum yield of propylene was 12.2%. To predict the yield distribution of products and the coke formation in the range of operating conditions, a mechanistic model was developed based on experimental results. To analyze and characterize the atmospheric gasoil, a novel algorithm was applied. This algorithm utilized density, ASTM distillation curve, H/C ratio and the total aromatic fraction and generates the detail analysis of feedstock including paraffinic, naphthenic, aromatics and poly aromatic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.