Abstract

X-ray detection limit and sensitivity are important figure of merits for perovskite X-ray detectors, but literatures lack a valid mathematic expression for determining the lower limit of detection for a perovskite X-ray detector. In this work, we present a thorough analysis and new method for X-ray detection limit determination based on a statistical model that correlates the dark current and the X-ray induced photocurrent with the detection limit. The detection limit can be calculated through the measurement of dark current and sensitivity with an easy-to-follow practice. Alternatively, the detection limit may also be obtained by the measurement of dark current and photocurrent when repeatedly lowering the X-ray dose rate. While the material quality is critical, we show that the device architecture and working mode also have a significant influence on the sensitivity and the detection limit. Our work establishes a fair comparison metrics for material and detector development.

Highlights

  • X-ray detection limit and sensitivity are important figure of merits for perovskite X-ray detectors, but literatures lack a valid mathematic expression for determining the lower limit of detection for a perovskite X-ray detector

  • Some of the work[27,28,29] have adopted a method referenced as derivatives of the International Union of Pure and Applied Chemistry (IUPAC) definitions, there has been no discussions on its statistical validity

  • We propose a systematic approach for the detection limit determination of an X-ray detector based on a well-established statistical model that correlates the dark current and photocurrent under X-ray irradiation quantitatively with the detection limit

Read more

Summary

Introduction

X-ray detection limit and sensitivity are important figure of merits for perovskite X-ray detectors, but literatures lack a valid mathematic expression for determining the lower limit of detection for a perovskite X-ray detector.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.