Abstract

Accurate prediction of the gene structure depends upon the accurate prediction of splice sites. The conserved feature in splicing junction has been successfully used for the prediction of eukaryotic splice sites. In eukaryotes, though the di-nucleotide GT is conserved at 5′ splice sites, the pattern surrounding the conserved di-nucleotide varies from species to species. Most of the work related to splice site analysis has been extensively done in Homo sapiens and Arabidopsis thaliana. However, such works are yet to be fully explored in Oryza sativa and other species of grass family. In this study, statistical techniques have been applied to discriminate the real splice sites from pseudo splice sites in rice, maize and barley genomes and based on this a suitable window size is determined for the prediction of donor splice sites. Depending upon the determined window size, appropriate methods for predicting donor splice sites in rice have been considered and compared in terms of prediction accuracy. The results revealed that a window size of 9 base pair (3 bp at the exon end and 6 bp at the intron start including the conserved di-nucleotide GT at the beginning of intron) is an effective window size in all the three species of grass family for the prediction of donor splice sites. Further, the Maximum Entropy Model based method is found as best among the short sequence based prediction methods for donor splice sites with the 9 base pair window size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call