Abstract

There remains an unmet need for skin tissue-based assays for the measurement of the UVA protection and efficacy of sunscreens. Here we describe development of a novel electron paramagnetic resonance assay that uses the photogeneration of reactive melanin radical as a measure of UV light penetration to melanocytes in situ in skin. We have used areas of focal melanocytic hyperplasia in the skin of Monodelphis domestica to model the human nevus. We show that we are able to use this assay to determine the monochromatic protection factors (mPF) of research and commercial sunscreens at specific narrow wavebands of UVB, UVA and blue visible light. Both commercial sunscreens, a sun protection factor (SPF) 4 and an SPF 30 product, had mPFs in the UVB range that correlated well with their claimed SPF. However, their mPF in the UVA ranges were only about one-third of claimed SPF. This technique can be used to design and assay sunscreens with optimally balanced UVA and UVB protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call