Abstract

Abstract Physical modeling is essential to the conceptual understanding of the mechanisms governing multiphase flow in porous media. However, the need for accurate data is hampered by the limited amount of appropriate instrumentation designed to measure fluid saturation in three-fluid phase flow experiments. In centrifuge testing, this is accentuated by the fact that the instruments must be small and resistant to the effects of increased gravity. Miniature resistivity probes, developed at Cambridge University Engineering Department (CUED), were used to determine water saturation variations during a centrifuge test and a 1 g two-dimensional multiphase flow experiment. These experiments were conducted to study the migration of light non-aqueous phase liquids (LNAPL) in unsaturated sands. Prior to the tests, the resistivity probes were calibrated against the water saturation of unsaturated sand samples. The calibration relationship was compared to Archie's law. The miniature probes proved to be a valuable tool for monitoring water saturation variations during three-fluid phase flow under 1 g conditions, as well as under the accelerated gravity field of 20 g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.