Abstract

To date, there are limited data on the thermal properties of secondary organic aerosol (SOA) components. In this study, we employed an experimental method to evaluate the physical properties of some atmospherically relevant compounds. We estimated the thermodynamic properties of SOA components, in particularly some carboxylic acids. The molar heat capacity, melting point and enthalpy, and vaporization enthalpy of the samples were determined via differential scanning calorimetry and thermogravimetric analysis, and their vaporization enthalpy (ΔHvap) was estimated using Clausius–Clapeyron and Langmuir equations based on their thermogravimetric profiles. The thermodynamic properties of benzoic acid as a reference compound agree well with the reported values. The obtained specific heat capacities of benzoic acid, phthalic acid, pinic acid, ketopinic acid, cis-pinonic acid, terpenylic acid and diaterpenylic acid acetate (DTAA) are 118.1, 169.4, 189.9, 223.9, 246.1, 223.2, and 524.1 J mol−1 K−1, respectively. The ΔHvap of benzoic acid, phthalic acid, ketopinic acid, DTAA, and 3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA) are 93.2 ± 0.4, 131.6, 113.8, and 124.4 kJ mol−1, respectively. The melting and vaporization enthalpies of the SOA components range from 7.3 to 29.7 kJ mol−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call