Abstract

This paper describes the process of determining the presence of volatile organic compounds in air emissions from industrial wastewater treatment plants (WWTP). The analytical method, based on thermal desorption-gas chromatography-mass spectrometry, was developed to simultaneously determine of 99 volatile organic compounds (VOCs) in air samples. This method is rapid, environmentally-friendly (since no organic solvents are used to extract the analytes) and compatible with a large range of thermally stable polar and apolar compounds. The target VOCs were selected on the basis of their occurrence in real samples and their adverse effects on the environment and human health. To cover the wide range of target compounds, multisorbent tubes filled with Tenax TA and Carbograph 1TD were used. Method validation showed good repeatabilities, low detection limits, a high linear range and good recoveries. At a fixed sample volume of 600 mL no significant losses for any of the target compounds were found in the samples. Stability during storage indicated that samples must be keep refrigerated at 4°C and analysed within three days of collection. Real samples were taken from air emissions of an industrial wastewater treatment plant located in the Southern Industrial Area of Tarragona (Spain) with the aim of studying its contribution as a source of atmospheric VOCs. This WWTP collects wastewater from several chemical factories which produce isocyanates, polyurethanes, chlorinated organics and functional chemicals among other products. Samples from the collecting tank after the primary sedimentation showed higher VOC concentrations than samples from the secondary treatment tank. The most abundant VOCs found in these emissions are included in the USEPA List of Hazardous Air Pollutants. The highest values correspond to acrylonitrile (up to 1843 µg m−3) and styrene (up to 573.70 µg m−3). The levels of chloroform, 1,4-dioxane, ethylbenzene, 1,2,3-trimethylbenzene and 1,4-diethylbenzene were also high.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.