Abstract

In this study, determination of aromatic compounds in cheese samples was performed by headspace solid-phase microextraction (HS-SPME) using a new adsorbent as a novel coated fiber in combination with a gas chromatography/mass spectrometry or flame ionization detector to evaluate the changes during ripening. Brine and ultrafiltrated (UF) cheese were sampled via HS-SPME and analyzed by gas chromatography/mass spectrometry. Polysulfone and mesoporous carbon nitride were used as two types of fibers for coating. The results showed that the pH had significant decreased during the 120days for brine cheese (p < 0.001), and during the 90days (p < 0.001) for UF cheese. Acidity was relatively stable during the ripening period for both cheeses (p > 0.05). Protein content decreased during the ripening period for both cheeses (p < 0.001). Moisture content also significantly decreased during the ripening period for both cheeses (p < 0.001). 74 compounds were identified in brine cheese and 27 major components in UF cheese. Fatty acids were the predominant components, followed by aldehydes (n: 17, 22.9%), alcohol (n; 12, 16.2%), ester (n: 11, 14.8%), alkane (n: 7, 9.4%), and ketone (n: 6, 8.1%) for white brine cheese, while for UF cheese fatty acid (n: 12, 44.4%) and aldehyde (n: 5, 18.5%), alcohol (n: 3, 11.1%), ketone (n: 3, 11.1%), ester (n: 2, 7.4%) and alkane (n: 1, 3.7%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call