Abstract

Langevin dynamical simulations of shear-induced melting two-dimensional (2D) dusty plasmas are performed to study the determination of the shear viscosity of this system. It is found that the viscosity calculated from the Green-Kubo relation, after removing the drift motion, well agrees with the viscosity definition, i.e., the ratio of the shear stress to the shear rate in the sheared region, even the shear rate is magnified ten times higher than that in experiments. The behaviors of shear stress and its autocorrelation function of shear-induced melting 2D dusty plasmas are compared with those of uniform liquids at the same temperatures, leading to the conclusion that the Green-Kubo relation is still applicable to determine the viscosity for shear-induced melting dusty plasmas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call