Abstract

An SPE-HPTLC method for simultaneous identification and quantification of seven pharmaceuticals in production wastewater was optimized and validated. The studied compounds were enrofloxacine, oxytetracycline, trimethoprim, sulfamethazine, sulfadiazine, sulfaguanidine and penicillin G/procaine. The method involves solid-phase extraction on hydrophilic-lipophilic balance cartridges with methanol and HPTLC analysis of extracts on CN modified chromatographic plates followed by videodensitometry at 254 and 366 nm. Optimization of chromatographic separation was performed by systematic variation of the mobile phase composition using genetic algorithm approach and the optimum mobile phase composition for TLC separation was 0.05 M H2C2O4:methanol = 0.81:0.19 (v/v). Linearity of the method was demonstrated in the ranges from 1.5 to 15.0 µg L−1 for enrofloxacine, 100–500 µg L−1 for oxytetracycline, 150–600 µg L−1 for trimethoprim, 300–1100 µg L−1 for sulfaguanidine and 100–400 µg L−1 for sulfamethazine, sulfadiazine and penicillin G/procaine with coefficients of determination higher than 0.991. Mean recoveries ranged from 74.6 to 117.1% and 55.1 to 108.0% for wellspring water and production wastewater, respectively. Only sulfaguanidine showed lower results. The described method has been applied to the determination of pharmaceuticals in wastewater samples from pharmaceutical industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.