Abstract
As the physical subject, determining vehicle operating modes is a prerequisite for implementing global optimization energy management. To avoid the case study of different vehicle configurations, a “kinetic/potential energy & onboard energy” conservation framework is proposed to determine vehicle working modes. Firstly, typical topologies and existing work modes for hybrid vehicles with different architectures are summarized. As a numerical method, the state space is meshed, which is restricted by introducing trip information. Then, a “kinetic/potential energy & onboard energy” conservation framework is established to determine the work mode between any reachable state points. By combining external factors, internal factors and additional factors reasonably and feasibly, various trigger conditions are generated to realize the one-to-one mapping between work mode and driving condition, which standardizes the DP optimizing process. Correspondingly, the stage cost and control are determined to achieve the optimal energy distribution. Finally, regarding DP strategy as a benchmark, multiple evaluation indexes are proposed to evaluate the utilization ratio of a control strategy to global trip information. An example is given to evaluate the optimal rule-based strategy. The higher the index is, the higher the similarity with the DP strategy is, and the higher the economic performance of the vehicle is.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.