Abstract

A double exponential (DE) functional form for Lennard-Jones (LJ) interactions, proposed in our previous study, has many advantages over LJ potentials including a natural softcore characteristic for the convenience of the pathway-based free-energy calculations, fast convergence, and flexibility in use. In this work, we put the first step on the application of the DE functional form by identifying a DE potential, coined DE-TIP3P, for molecular simulations using the TIP3P water model. The developed DE-TIP3 potential was better than LJ potential in reproducing the experimental water properties. Afterward, we developed the nonbonded models of 15 divalent metal ions, which frequently appear and play vital roles in biological systems, to be consistent with the DE-TIP3P potential and TIP3P water model. Our nonbonded models were as good as the complicated nonbonded dummy cationic models by Jiang et al. and the nonbonded 12-6-4 LJ models by Li and Merz in reproducing the experimental properties of those ions. Moreover, our nonbonded models achieved a better performance than the compromise (CM) LJ models and 12-6-4 LJ models, developed by Li and Merz, in reproducing the properties of MgCl2 in aqueous solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call