Abstract

Abstract. In this study, we explored the use of statistical machine learning and long-term groundwater nitrate monitoring data to estimate vadose zone and saturated zone lag times in an irrigated alluvial agricultural setting. Unlike most previous statistical machine learning studies that sought to predict groundwater nitrate concentrations within aquifers, the focus of this study was to leverage available groundwater nitrate concentrations and other environmental variables to determine mean regional vertical velocities (transport rates) of water and solutes in the vadose zone and saturated zone (3.50 and 3.75 m yr−1, respectively). The statistical machine learning results are consistent with two primary recharge processes in this western Nebraska aquifer, namely (1) diffuse recharge from irrigation and precipitation across the landscape and (2) focused recharge from leaking irrigation conveyance canals. The vadose zone mean velocity yielded a mean recharge rate (0.46 m yr−1) consistent with previous estimates from groundwater age dating in shallow wells (0.38 m yr−1). The saturated zone mean velocity yielded a recharge rate (1.31 m yr−1) that was more consistent with focused recharge from leaky irrigation canals, as indicated by previous results of groundwater age dating in intermediate-depth wells (1.22 m yr−1). Collectively, the statistical machine learning model results are consistent with previous observations of relatively high water fluxes and short transit times for water and nitrate in the primarily oxic aquifer. Partial dependence plots from the model indicate a sharp threshold in which high groundwater nitrate concentrations are mostly associated with total travel times of 7 years or less, possibly reflecting some combination of recent management practices and a tendency for nitrate concentrations to be higher in diffuse infiltration recharge than in canal leakage water. Limitations to the machine learning approach include the non-uniqueness of different transport rate combinations when comparing model performance and highlight the need to corroborate statistical model results with a robust conceptual model and complementary information such as groundwater age.

Highlights

  • Nitrate is a common contaminant of groundwater and surface water that can affect drinking water quality and ecosystem health

  • This study addressed a relatively unexplored use of random forest, which is to identify optimal lag times based on testing a range of transport rate combinations through the vadose and saturated zones, historical NO−3, and the use of accessible environmental data sets

  • Long-term groundwater NO−3 monitoring and previous groundwater age-dating studies in Dutch Flats provided an opportune setting to test a new application of statistical machine learning for determining vadose and saturated zone transport rates

Read more

Summary

Introduction

Nitrate is a common contaminant of groundwater and surface water that can affect drinking water quality and ecosystem health. Lag times for the movement of non-point source ni-. Wells et al.: Determination of vadose zone and saturated zone nitrate lag times trate contamination through the subsurface are widely recognized (Böhlke, 2002; Meals et al, 2010; Puckett et al, 2011; Van Meter and Basu, 2017) but difficult to measure. Vadose (unsaturated zone) and groundwater (saturated zone) lag times are of critical importance for monitoring, regulating, and managing the transport of contaminants in groundwater. Regulators and stakeholders in agricultural landscapes are increasingly in need of more precise and local lag time information to better evaluate and apply regulations and best management practices for the reduction of groundwater nitrate concentrations (e.g., Eberts et al, 2013)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call