Abstract

This paper describes the experimental implementation of the laser-ultrasonic method for diagnosing mechanical compression and tensile stresses in steel structures, based on the acoustoelasticity effect. The special laser-ultrasonic transducer that provides the laser excitation and highly sensitive piezoelectric detection of head (longitudinal subsurface) ultrasonic waves is developed. It is shown on the example of R65 rail samples of various quality that, regardless of the structural phase state of the rail, there is one and the same linear relationship between the relative variation of the velocity of head ultrasonic waves and the absolute value of uniaxial compression and tensile stresses acting in the rail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.