Abstract
A method based on membrane-protected micro-solid-phase extraction coupled with gas chromatography and mass spectrometry was developed for the determination of six ultraviolet filter compounds in various aqueous media. Multiwalled carbon nanotubes as the sorbent were encapsulated in a sealed polypropylene membrane packet and immersed in the sample to extract the analytes, and then dichloromethane was used for desorption purpose. The method was sensitive enough for quantitative analysis of the target analytes, with limits of quantification between 0.01 and 0.06μg/L, and produced a linear response (R2 >0.991) over the calibration range (0.05-6μg/L). The obtained reproducibility was practically suitable with relative standard deviation values of less than 14% in pure water (spiked at 0.20/μg L) and less than 15% in real samples. The optimized method was applied for the analysis of real water samples with varying matrix complexity: tap, river, and dam water; geothermal spa; and sewage treatment plant effluent. Various levels and patterns of contamination were observed in the examined samples, while the sample from spa was the most contaminated, regarding the target analytes. Matrix spikes and matrix spike replicates were also analyzed to validate the technique for analysis of real aqueous samples, and satisfactory results were achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.